B. Tech III Year II Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA

19AME65f - OPTIMIZATION TECHNIQUES THROUGH MATLAB

(Open Elective - II)

T P L \mathbf{C} 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Introduce basics of MATLAB
- Familiarize the fundamentals of optimization
- Explain single variable optimization using various methods
- Implement multi variable optimization using various methods
- Train various evolutionary algorithms.

UNIT - 1: Introduction to MAT LAB:

10 Hrs

Overview, MATLAB Preliminaries, Basics of MATLAB, Beyond the Basics of MATLAB, Popular Functions and Commands, Plotting using MATLAB, Optimization with MATLAB.

Learning Outcomes:

At the end of this unit, the student will be able to

• Write simple codes in MATLAB.

L3

• Plot the data using MATLAB.

L3

• Implement optimization models in MATLAB.

L3

UNIT – II: Introduction to Optimization:

10 Hrs

Statement of an optimization problem, Classifications of optimization Problems: Single variable optimization, Multi variable optimization with no constraints, Multi variable optimization with equality constraints, Multi variable optimization with inequality constraints, Convex and Concave programming.

Learning Outcomes:

At the end of this unit, the student will be able to

• Build optimization problem.

L1

Solve various optimization problems

L3

• Compare convex and concave programming

1.4

UNIT – III: Single Variable Optimization:

Finite difference method, Central difference method, Runge-Kutta method, interval halving method, golden section method with MATLAB code.

Learning Outcomes:

At the end of this unit, the student will be able to

• Understand various methods involving single variable optimization.

L₂

• Develop codes in MATLAB for different methods. • Identify methods for solving a single variable optimization problem.

L3 L3

UNIT – IV: Multi Variable Optimization:

8 Hrs

Conjugate gradient method, Newton's method, Powell's method, Flectcher- Reeves method, Hooke and Jeeves method, interior penalty function with MATLAB code.

Learning Outcomes:

At the end of this unit, the student will be able to

• Apply various methods involving multi variable optimization.

L₂ L3

- Develop codes in MATLAB for solving various multi variable optimization problems.
- Choose methods for solving a multi variable optimization problem.

L3

Page 1 of 2

JNTUA College of Engineering PULIVENDULA - 516 399

Mechanical Engineering Department,

UNIT – V: Evolutionary Algorithms:

8 Hrs

Overview, Genetic Algorithms: Basics of Genetic Algorithms, Options in MATLAB, Multi Objective Optimization using Genetic Algorithms, Ant Colony Optimization, Simulated Annealing, Particle Swarm Optimization.

Learning Outcomes:

At the end of this unit, the student will be able to

•	Apply different types of genetic algorithms.	L3
•	Model optimization problems using genetic algorithms in MATLAB.	L3
	Compare different genetic algorithms for performance.	L5

Text Books:

- 1. Rao V.Dukkipati, MATLAB: An Introduction with Applications, Anshan, 2010.
- 2. Achille Messac, Optimization in practice with MATLAB, Cambridge University Press, 2015.
- 3. Jasbir S Arora, Introduction to optimum design, 2/e. Elsevier, 2004.

Reference Books:

- 1. Cesar Perez Lopez, MATLAB Optimization Techniques, Academic press, Springer publications, 2014.
- 2. Steven C.Chapra, Applied Numerical Methods with MATLAB for Engineers and scientists, 4/e, McGraw-Hill Education, 2018.

Course Outcomes:

At the end of this Course the student will be able to

•	Use optimization terminology and concepts, and understand how to classify an optimization problem.	L4
	Apply optimization methods to engineering problems.	L3
	Implement optimization algorithms.	1.3
		LJ
	Compare different genetic algorithms.	LO
•	Solve multivariable optimization problems.	L4

